More on equations of planes

So far, we have seen several forms for the equation of a plane:

\[Ax + By + Cz + D = 0 \]
standard form

\[z = m_x x + m_y y + b \]
slopes-intercept form

\[z - z_0 = m_x (x - x_0) + m_y (y - y_0) \]
point-slopes form

Using vectors, we can add another form that is coordinate-free.

A plane can be specified by giving a vector \(\mathbf{n} \) perpendicular to the plane (called a normal vector) and a point \(P_0 \) on the plane. We can develop a condition or test to determine whether or not a variable point \(P \) is on the plane by thinking geometrically and using the dot product. Here’s the reasoning:

- \(P \) is on the plane if and only if the vector \(\overrightarrow{P_0P} \) is parallel to the plane.
- The vector \(\overrightarrow{P_0P} \) is parallel to the plane if and only if \(\overrightarrow{P_0P} \) is perpendicular to the normal vector \(\mathbf{n} \).
- The vectors \(\overrightarrow{P_0P} \) and \(\mathbf{n} \) are perpendicular if and only if their dot product is zero:

\[\mathbf{n} \cdot \overrightarrow{P_0P} = 0. \]

So, the condition \(\mathbf{n} \cdot \overrightarrow{P_0P} = 0 \) is a new form for the equation of a plane. We’ll refer to this as the point-normal form. We can see how the point-normal form relates to our familiar forms by introducing coordinates and components. Let \(P_0 \) have coordinates \((x_0, y_0, z_0)\), the variable point \(P \) have coordinates \((x, y, z)\), and the normal vector \(\mathbf{n} \) have components \((n_x, n_y, n_z) \). With these, the vector \(\overrightarrow{P_0P} \) has components \((x - x_0, y - y_0, z - z_0) \). So, the point-normal form can be written as

\[0 = \mathbf{n} \cdot \overrightarrow{P_0P} \]

\[= (n_x, n_y, n_z) \cdot (x - x_0, y - y_0, z - z_0) \]

\[= n_x (x - x_0) + n_y (y - y_0) + n_z (z - z_0) \]

\[= n_x x + n_y y + n_z z - (n_x x_0 + n_y y_0 + n_z z_0). \]

The last expression is the same as \(Ax + By + Cz + D \) if we identify \(n_z \) as \(A \), \(n_y \) as \(B \), \(n_z \) as \(C \) and \(-(n_x x_0 + n_y y_0 + n_z z_0) \) as \(D \). This is perhaps easier to see in an example.

Example

Find the standard form for the equation of the plane that contains the point \((6, 5, 2)\) and has normal vector \((7, -3, 4)\).

With \((x, y, z)\) as the coordinates of a variable point, we can write

\[0 = \mathbf{n} \cdot \overrightarrow{P_0P} \]

\[= (7, -3, 4) \cdot (x - 6, y - 5, z - 2) \]

\[= 7(x - 6) - 3(y - 5) + 4(z - 2) \]

\[= 7x - 3y + 4z - 42 + 15 - 8 \]

\[= 7x - 3y + 4z - 35. \]

So the standard form of the equation for this plane is \(7x - 3y + 4z - 35 = 0\).
Exercises

1. Use the point-normal equation to determine which, if any, of the following points are on the plane that has normal vector \(2\hat{i} - \hat{j} + 6\hat{k}\) and contains the point \((3, 4, 2)\).

 (a) \((5, -4, 0)\)
 (b) \((1, 6, 2)\)
 (c) \((2, 8, 3)\)

 \textit{Answer:} \((5, -4, 0)\) and \((2, 8, 3)\) are on the plane, \((1, 6, 2)\) is not

2. Find the slopes-intercept form of the equation that contains the point \((4, 2, -7)\) and has normal vector \(\vec{n} = 5\hat{i} - 3\hat{j} + 2\hat{k}\).

 \textit{Answer:} \(z = -\frac{5}{2}x + \frac{3}{2}y\)

3. Find the slopes-intercept form of the equation for the plane that contains the point \((4, 2, -7)\) and has normal vector \(\vec{n} = \langle -6, 1, 5 \rangle\).

 \textit{Answer:} \(z = \frac{6}{5}x - \frac{1}{5}y - \frac{57}{5}\)

4. Find the standard form of the equation for the plane that contains the point \((6, 3, 0)\) and is parallel to a second plane given by the equation \(5x + 2y - 9z = 14\).

5. Find the standard form of the equation for the plane that contains the point \((7, -2, 1)\) and is perpendicular to the vector from the origin to that same point.

 \textit{Answer:} \(7x - 2y + z - 54 = 0\)