Directions: Only write on one side of each page.

Do any (5) of the following

1. (20 points) Using any previous results, prove Proposition 4.7: Hilbert’s Euclidean parallel postulate \(\iff \) if a line intersects one of two parallel lines, then it also intersects the other.

2. (20 points) Using any previous results, prove the uniqueness (but not existence) part of Proposition 4.3: Every segment has a unique midpoint.

3. (20 points) Using any results through Chapter 5 prove that Hilbert’s Euclidean parallel property \(\iff \) Statement Ex5 where statement Ex5 is:
 Given lines \(l \) and \(m \) where \(l \parallel m \), point \(P \) is on \(m \), \(Q \) is the foot of the perpendicular from \(P \) to line \(l \), and \(R \) is the foot of the perpendicular from \(Q \) to line \(m \). Then \(\overline{PQ} = \overline{QR} \).

4. (20 points) Using any results through Chapter 4, prove the following: Hilbert’s parallel property holds \(\iff \) if \(k, m, l \) are distinct lines, \(k \) is parallel to \(m \), and \(m \) is parallel to \(l \), then \(k \) is parallel to \(l \).

5. (20 points) Using any results through Chapter 5, prove that Hilbert’s parallel postulate implies Wallis’ postulate. [Wallis’ postulate is: Given any triangle \(\triangle ABC \) and given any segment \(DE \). There exists a triangle \(\triangle DEF \) (having \(DE \) as one of its sides) that is similar to \(\triangle ABC \).]

6. (4 points each) Which of the following statements are correct? [You need not rewrite the statements when you answer.]

 (a) In hyperbolic geometry, if \(\triangle ABC \) and \(\triangle DEF \) are equilateral triangles and \(\angle A \cong \angle D \), then the triangles are congruent.

 (b) In hyperbolic geometry, if \(m \) contains a limiting parallel ray to \(l \), then \(l \) and \(m \) have a common perpendicular.

 (c) In hyperbolic geometry, if \(m \) does not contain a limiting parallel ray to \(l \) and if \(m \) and \(l \) have no common perpendicular, then \(m \) intersects \(l \).

 (d) Every valid theorem of neutral geometry is also valid in hyperbolic geometry.

 (e) In hyperbolic geometry, there exists an angle and there exists a line that lies entirely within the interior of this angle.