I affirm this work abides by the university’s Academic Honesty Policy.

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do two (2) of these "Computational" problems

C.1. [15 points] Using anything you know about determinants, compute the determinant of the following matrix by hand.

\[
\begin{bmatrix}
0 & 0 & 1 & -1 & -1 \\
2 & 4 & 2 & 4 & 2 \\
2 & 4 & 3 & 0 & 3 \\
3 & 6 & 6 & 3 & 6 \\
0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

C.2. [9, 6 points] Recall that the zero vector of the vector space \(F(C, C) = \{ f : C \rightarrow C \} \) is the function \(Z : C \rightarrow C \) defined by \(Z(x) = 0 \) for all \(x \in C \). Consider the span \(V = \langle \{ e^{kx} | k \in C \} \rangle \) which is a subspace of \(F(C, C) \).

1. (a) Prove that \(W = \{ f \in V | f'' - 3f' + f = Z \} \) is a subspace of \(V \).
 (b) Find a basis for \(W \).

C.3. [15 Points] Find a basis for the kernel of the linear transformation \(T : M_{2,2} \rightarrow M_{2,2} \) defined by \(T(A) = \frac{1}{2}A - \frac{1}{2}A^t \).

Do any two (2) of these "Similar to In Class, Text, or Homework" problems

M.1. [15 Points] Prove that if \(T : U \rightarrow V \) is a linear transformation and \(W \) is a subspace of \(U \) then the image of \(W \) under \(T \), \(T(W) = \{ T(\bar{u}) : \bar{u} \in W \} \), is a subspace of \(V \).

M.2. [15 Points] Prove Theorem SMEE (Similar Matrices have Equal Eigenvalues)

1. Suppose \(A \) and \(B \) are similar matrices. Then the characteristic polynomials of \(A \) and \(B \) are equal, that is, \(\rho_A(x) = \rho_B(x) \).

M.3. [15 Points] Prove Theorem EER Eigenvalues, Eigenvectors, Representations: Suppose that \(T : V \rightarrow V \) is a linear transformation and \(B = \{ u_1, u_2, \cdots , u_n \} \) is a basis of \(V \). Then \(v \in V \) is an eigenvector of \(T \) for the eigenvalue \(\lambda \) if and only if \(\rho_B(v) \) is an eigenvector of \(M^T_{B,B} \) for the eigenvalue \(\lambda \).
Do two (2) of these "Other" problems

T.1. [15 Points] In Proof LT-1 you saw a one-step test for whether or not a function is a linear transformation. This problem gives a one-step test for showing a subset of a vector space is a subspace.

1. Prove that a subset \(W \) of a vector space \(V \) is a subspace if and only if \(\alpha \vec{w}_1 + \beta \vec{w}_2 \in W \) is true for all \(\vec{w}_1, \vec{w}_2 \in W \) and for all \(\alpha, \beta \in \mathbb{C} \).

T.2. [15 Points] Let \(B = \{ e^x, xe^x, x^2 e^x \} \) be a basis for the subspace \(V \) of the vector space of functions with domain and codomain the set of complex numbers: \(F(C, C) = \{ f \mid f : C \to C \} \)

1. (a) Find the matrix representation \(M_{B,B}^T \) of the linear transformation \(T : V \to V \) defined by \(T(f) = f' \).

 (b) Use this matrix representation to find the kernel of \(T \), \(\ker(T) \).

T.3. [15 Points] It is a true fact that if \(V = \{ A \in M_{n,n} \mid A \) is symmetric} \) and \(W = \{ B \in M_{n,n} \mid B \) is skew-symmetric} \) then \(M_{n,n} = V \oplus W \). Prove this fact in the special case when \(n = 2 \).

T.4. [15 points] Professor Beezer has proven that if \(V \) is a finite-dimensional vector space and \(T : V \to V \) has \(\text{Range}(T) = V \) then \(T \) is an isomorphism. Show that this is not necessarily the case if \(V \) is infinite dimensional by giving an example of a linear transformation \(T : P \to P \) that is not injective but that has \(\text{Range}(T) = P \). Be sure to explain why your example has the desired properties. [Recall that \(P \) is the infinite dimensional vector space of all polynomials.]

You must do both of these problems ON THIS SHEET

R.1. [15 points] Prove that the set \(V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{C}^3 : 5x_1 - 7x_2 - 2x_3 = 0 \right\} \) is a subspace of \(\mathbb{C}^3 \) by applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester’s writing exercises.

R.2. [15 points] Suppose that \(Z : V \to V \) is the linear transformation denoted by \(Z(\mathbf{v}) = \mathbf{0} \) for all \(\mathbf{v} \in V \) (i.e. \(Z \) is the “zero” linear transformation). Suppose that \(T : V \to V \) is a linear transformation such that \(T^4 = Z \) (where \(T^4 = T \circ T \circ T \circ T \)). Then prove that \(T \) is not invertible. Write your proof according to the standards of this semester’s writing exercises.