Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Exam 5

“Computational” Problems

C.1. Do one (1) of the following:

(a) Given the matrix

\[
A = \begin{bmatrix}
p & -q \\
q & p
\end{bmatrix}
\]

where \(p \) and \(q \) are real numbers with \(q \neq 0 \).

i. Show that the eigenvalues of \(A \) are \(\lambda_1 = p + iq \) and \(\lambda_2 = p - iq \).

ii. Determine a nonsingular matrix \(S \) and a diagonal matrix \(D \) for which \(S^{-1}AS = D \).

(b) Prove that \(T : P_2 \rightarrow P_2 \) defined by \((Tf)(x) = f(x + 1)\) is both a linear transformation and injective.

C.2. Find the matrix \(M_{B,B}^T \) of the linear transformation \(T : P_2 \rightarrow P_2 \) defined by \((Tf)(x) = f(x + 1)\) where \(B = \{1, x, x^2\} \) is the standard basis of \(P_2 \).

Do Two (2) of these “In text, class or homework” problems

M.1. Prove the third part (transitive property) of Theorem SER, Similarity is an Equivalence Relation:

Suppose \(A, B \) and \(C \) are square matrices of size \(n \). Then

(a) \(A \) is similar to \(A \). (Reflexive)

(b) If \(A \) is similar to \(B \), then \(B \) is similar to \(A \). (Symmetric)

(c) If \(A \) is similar to \(B \) and \(B \) is similar to \(C \), then \(A \) is similar to \(C \). (Transitive)

M.2. Prove Theorem EDELI, Eigenvectors with Distinct Eigenvalues are Linearly Independent:

Suppose that \(A \) is a square matrix and \(S = \{x_1, x_2, x_3, ..., x_p\} \) is a set of eigenvectors with eigenvalues \(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_p \) such that \(\lambda_i \neq \lambda_j \) whenever \(i \neq j \). Then \(S \) is a linearly independent set.
M.3. Prove Theorem SSRLT, Spanning Set for Range of a Linear Transformation
Suppose that \(T : U \rightarrow V \) is a linear transformation and \(S = \{ u_1, u_2, u_3, ..., u_t \} \) spans \(U \). Then \(R = \{ T(u_1), T(u_2), T(u_3), ..., T(u_t) \} \) spans \(R(T) \).

M.4. Prove Theorem VRI, Vector Representation is Injective
If \(B = \{ \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \} \) is a basis for the vector space \(V \) then The function \(\rho_B : V \rightarrow \mathbb{C}^n \) given in Definition VR [548] is an injective linear transformation.

Do One (1) of these “Not in Text” problems
T.1. Prove: If \(A \) is diagonalizable, then \(A^T \) is similar to \(A \).

T.2. This problem is Theorem CLTLT, Composition of Linear Transformations is a Linear Transformation in the textbook. Prove it, using the definition of linear transformation (you cannot just cite a theorem in the book.)

T.3. Define two vectors \(f, g \) in the vector space \(P_2 \) to be \textbf{orthogonal with respect to the coordinate basis} \(B = \{ 1, x, x^2 \} \) if \(\langle \rho_B(f), \rho_B(g) \rangle = 0 \). [Recall that \(\rho_B(f) \) is a vector in \(\mathbb{C}^2 \).] Find a basis for the set of all polynomials \(g \) in \(P_2 \) that are orthogonal with respect to the coordinate basis \(B \) to the polynomial \(f(x) = 2 + x \).

Cumulative Exam

Do Two (2) of these “In text, class or homework” problems
CC.1. (1 point each) If \(A \) is a square matrix, make a list of statements equivalent to “\(A \) is nonsingular”

CC.2. Let \(U, V \) be abstract vector spaces and \(T : U \rightarrow V \) a function. Show that \(T \) is a linear transformation \textbf{if and only if} for all \(\vec{u}_1, \vec{u}_2 \in U \) and all scalars \(a, b \) we have \(T(a\vec{u}_1 + b\vec{u}_2) = aT(\vec{u}_1) + bT(\vec{u}_2) \). [Be sure to prove both directions of the “if and only if”.

CC.3. Given an invertible matrix \(S \), prove the following transformation \(T : M_{nn} \rightarrow M_{nn} \) is linear.
\[
T(A) = S^{-1}AS
\]

CC.4. If there are square matrices \(A \) and \(B \) satisfying the property that \(B^2 = A \), then we say \(B \) is a \textbf{square root} of \(A \). It is easy to see that a diagonal matrix \(D = \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & d_{nn} \end{bmatrix} \) has \(\sqrt{d_{11}} \begin{bmatrix} 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \sqrt{d_{nn}} \end{bmatrix} \) as a square root.

Prove that if \(A \) is a diagonalizable matrix, then \(A \) has a square root.

Do One (1) of these “Not in text” problems
MM.1. It is “obvious” that if \(a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots + a_k \vec{v}_k = \vec{0} \) is a nontrivial relation of linear dependence and if \(a_i \neq 0 \), then \(\vec{v}_i \) is in the span of the remaining vectors. Use this fact to prove that if a set \(S = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \cdots, \vec{v}_n \} \) is linearly dependent, then there is an index \(t \) for which \(\vec{v}_t \) is equal to a linear combination of the vectors \(\vec{v}_{t+1}, \vec{v}_{t+2}, \cdots, \vec{v}_n \) that \textbf{follow} it in \(S \).

MM.2. Use the principle of mathematical induction to prove the following fact we have used repeatedly throughout the semester.
Suppose \(V \) is a vector space, \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \cdots, \vec{v}_n \) and \(\vec{u}_1, \vec{u}_2, \vec{u}_3, \cdots, \vec{u}_n \) are vectors in \(V \). Then \((\vec{v}_1 + \vec{v}_2 + \cdots + \vec{v}_n) + (\vec{u}_1 + \vec{u}_2 + \cdots + \vec{u}_n) = (\vec{v}_1 + \vec{u}_1) + (\vec{v}_2 + \vec{u}_2) + \cdots + (\vec{v}_n + \vec{u}_n) \) for every positive integer \(n \).
1. (10 points) Prove that the set $Z = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \bigg| 2x_1 - 4x_2 + x_3 = 0 \right\}$ is a subspace of \mathbb{C}^3 by applying the three-part test of Theorem TSS.

2. (10 points) Suppose that A and B are square matrices of the same size, and AB is nonsingular. Give a proof by contradiction that B is nonsingular. (Do not do this problem simply by quoting a theorem from the book.)