Directions:

• Only write on one side of each page.
• Use terminology correctly.
• Partial credit is awarded for correct approaches so justify your steps.

Do Two (2) of these “Computational” Problems

C.1. Without using technology, compute the determinant of the matrix

\[
\begin{bmatrix}
0 & -1 & 0 & 1 \\
-2 & 3 & 1 & 6 \\
1 & -2 & 2 & 3 \\
0 & 1 & 0 & -2
\end{bmatrix}
\]

= 5.

C.2. Prove that the function \(T : M_{n,n} \rightarrow M_{n,n} \) given by \(T(A) = A + A^t \) is a linear transformation.

C.3. The number \(\lambda = 2 \) is an eigenvalue of the matrix

\[
\begin{bmatrix}
3 & -2 & 2 \\
-4 & 1 & -2 \\
-5 & 1 & -2
\end{bmatrix}
\]

Determine a basis for the eigenspace, \(E_A(2) \), corresponding to this eigenvalue and state the geometric multiplicity \(\gamma_A(2) \) of this eigenvalue.

\[
A - 2I = \begin{bmatrix}
3 - 2 & -2 & 2 \\
-4 & 1 - 2 & -2 \\
-5 & 1 & -2 - 2
\end{bmatrix}, \text{ row echelon form: } \begin{bmatrix}
1 & 0 & \frac{2}{5} \\
0 & 1 - \frac{2}{5} \\
0 & 0 & 0
\end{bmatrix} \text{ so } E_A(2) = \left\{ \begin{bmatrix}
-2 \\
2 \\
3
\end{bmatrix} \right\}
\]

and \(\gamma_A(2) = 1 \).

Do Two (2) of these “In text, class or homework” problems

M.1. Prove two (2) of the following.

(a) If \(A \) is diagonalizable and \(B \) is similar to \(A \) then \(B \) is diagonalizable.

(b) If \(A \) is diagonalizable and invertible then \(A^{-1} \) is diagonalizable.

(c) Suppose \(A \) and \(B \) have the same eigenvalues and each eigenvalue has the same algebraic and geometric multiplicity in \(A \) as it does in \(B \). If \(A \) is diagonalizable, then \(A \) and \(B \) are similar.

M.2. A square matrix \(A \) is idempotent if \(A^2 = A \). Show that if \(A \) is an idempotent matrix then the numbers 0 and 1 are both eigenvalues of \(A \) and that they are the only eigenvalues of \(A \).
M.3. Theorem ILTLI (Injective Linear Transformations and Linear Independence) tells us that if $T : U \to V$ is a linear transformation then the image of any linearly independent set is linearly independent. Without using this theorem, prove that if $S = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is a linearly independent set in the vector space U and $T : U \to V$ is an injective linear transformation, then $R = \{T(\vec{u}_1), T(\vec{u}_2), T(\vec{u}_3)\}$ is a linearly independent set in the vector space V.

Do two (2) of these “Other” problems

T.1. The set $B = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ is a basis for \mathbb{C}^2. Define a function $T : \mathbb{C}^2 \to \mathbb{C}^2$ by: if $\vec{x} = a \begin{bmatrix} 3 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, then $T(\vec{x}) = a \begin{bmatrix} 4 \\ 2 \end{bmatrix} + b \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Use the fact (which you do not have to prove) that T is a linear transformation to find the matrix A that satisfies $T(\vec{x}) = A\vec{x}$ for every vector $\vec{x} \in \mathbb{C}^2$.

T.2. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 6 and -7 and let $E_A(6)$ and $E_A(-7)$ be the respective eigenspaces.

(a) Write all possible characteristic polynomials of A that are consistent with $E_A(6) = 3$
(b) Write all possible characteristic polynomials of A that are consistent with $E_A(-7) = 2$.

T.3. An $n \times n$ matrix A is called nilpotent if, for some positive integer k, $A^k = O$, where O is the $n \times n$ zero matrix. Prove that 0 is the only eigenvalue of any nilpotent matrix.