Do BOTH of these “Computational” Problems

C.1. Solve the following system of linear equations by hand. Write the solution set using column vector notation. Make sure you copy the equations correctly.

\[
\begin{align*}
 x_4 + 2x_5 - x_6 &= 2 \\
 x_1 + 2x_2 + x_5 - x_6 &= 0 \\
 x_1 + 2x_2 + 2x_3 - x_5 + x_6 &= 2 \\
 x_1 + 2x_2 + 2x_3 + x_4 + x_5 &= 4
\end{align*}
\]

C.2. Find a 4 \times 5 matrix \(A \), that is not in reduced row-echelon form, whose null space is the set

\[
\left\{ \begin{bmatrix}
2x_2 - 6x_4 \\
x_2 \\
-5x_4 \\
x_4 \\
7x_2 + x_4
\end{bmatrix} : x_2, x_4 \in \mathbb{C} \right\}
\]

Do Two (2) of these “In text, class or homework” problems

M.1. Suppose \(A \) and \(B \) are \(m \times n \) matrices. Give a detailed explanation of why if \(A \) is row-equivalent to \(B \) then \(B \) is row-equivalent to \(A \).

M.2. Suppose that \(B \) is an \(m \times n \) matrix in reduced row-echelon form. Build a new, likely smaller, \(k \times l \) matrix \(C \) as follows. Keep any collection of \(k \) adjacent rows, \(k \leq m \). From these rows, keep columns 1 through \(l \), \(l \leq n \). Prove that \(C \) is in reduced row-echelon form.

M.3. Prove that a system of linear equations is homogeneous if and only if it has the zero vector as a solution.
Do BOTH of these “Not in Text” problems

T.1. Suppose that \(A \) is the coefficient matrix of a consistent linear system of equations and that two of the columns of \(A \) are identical. Prove that there must be an infinite number of solutions to the system of equations.

T.2. Let \(A \) be a \(4 \times 4 \) matrix and let \(\vec{b} \) and \(\vec{c} \) be vectors of constants with 4 entries each.

(a) If we are told that the linear system of equations \(LS\left(A, \vec{b} \right) \) has a unique solution, what can you say about the solutions set of \(LS\left(A, \vec{c} \right) \)? Why?

(b) If we are told that the linear system of equations \(LS\left(A, \vec{b} \right) \) is inconsistent, what can you say about the solutions set of \(LS\left(A, \vec{c} \right) \)? Why?

(c) Now suppose \(B \) is a \(4 \times 3 \) matrix and we know that \(LS\left(B, \vec{b} \right) \) has a unique solution. What can you say about the solution set of \(LS\left(B, \vec{c} \right) \)? Why?