The Problems

1. (20 points) On the attached sheet of graph paper, sketch the graph of the function \(f \) that satisfies the following conditions.

 Points on the graph of \(f \) \((-4, -1), (-3, 1), (-1, -2), (0, 0), (3, 2), (4, 4)\)

 Inputs where \(f'(x) \) Does Not Exist \(x = -4, x = -1 \)

 Inputs where \(f'(x) = 0 \) \(x = -3, x = 3 \)

 Intervals where \(f'(x) > 0 \) \((-\infty, -3), (-1, 3) \)

 Intervals where \(f'(x) < 0 \) \((-3, -1) \)

 Intervals where \(f''(x) > 0 \) \((-\infty, -4), (3, 4) \)

 Intervals where \(f''(x) < 0 \) \((-4, -1), (-1, 3), (4, \infty) \)

 Limit information \(\lim_{x \to -4} f'(x) = \infty \)

 \(\lim_{x \to -1^-} f'(x) = -\infty \)

 \(\lim_{x \to -1^+} f'(x) = 2 \)

2. (15 points) Find the absolute maximizers, minimizers, maximum and minimum of \(f(x) = x^{2/3} \) on \([-1, 8]\) or show they do not exist.

3. Given the function \(f(x) = -x^3 + 3x^2 - 1 \).

 (a) (10 points) Find the absolute maximum of \(f \) on \([0, \infty)\).

 (b) (10 points) Use calculus to carefully explain why this is an absolute maximum.

4. (20 points) Given the function \(f(x) = (x^2 - 1)^2 \).

 (a) Find all critical points of \(f \).

 (b) Find all second order critical points of \(f \).

 (c) Determine all intervals where \(f \) is strictly increasing and all intervals where \(f \) is strictly decreasing.

 (d) Determine all intervals where \(f \) is concave up and all intervals where \(f \) is concave down.

 (e) Classify the critical points as local maximizers, local minimizers or neither.

5. (15 points) Use Rolle’s Theorem or the Mean Value Theorem to show that if \(f \) is a polynomial with at least three zeros, say \(f(x_1) = f(x_2) = f(x_3) = 0 \), then there must be a point \(c \) at which \(f''(c) = 0 \).