Definition 1 If \(A \) is an \(n \times p \) matrix and \(\vec{b} \) is a vector in \(\mathbb{C}^n \) then the matrix \(M_k \) is the matrix obtained by replacing the \(k \)th column of \(A \) with the vector \(\vec{b} \).

Prove the following theorem.

Theorem 1 If \(A \) is a nonsingular matrix of size \(n \) then the unique solution to the system of equations \(A\vec{x} = \vec{b} \) is the vector \(\vec{x} \) whose \(k \)th component is \([\vec{x}]_k = \frac{\det(M_k)}{\det(A)} \).

Hint: Consider the matrix \(X_k \) obtained by replacing the \(k \)th column of the identity matrix with the vector \(\vec{x} \).