1. [10, 10, 10 points] Evaluate the following integrals. Show all of your work.

1. \(\int \cos^5(3x) \, dx = \int [\cos^2(3x)]^2 \cos(3x) \, dx = \frac{1}{3} \int (1 - \sin^2(3x))^2 \, d(\sin 3x) = \frac{1}{3} \int (1 - 2u^2 + u^4) \, du = \frac{1}{3}u - \frac{2}{3}u^3 + \frac{1}{15}u^5 + C. \) Now backsubstitute \(u = \sin(3x). \)

2. \(\int \sec^4(2x) \, dx = \int [\sec^2(2x)] \sec^2(2x) \, dx = \frac{1}{2} \int (1 + \tan^2(2x)) \, d(\tan 2x) = \frac{1}{2} \int (1 + u^2) \, du = \frac{1}{6}u^3 + \frac{1}{2}u + C. \) Now backsubstitute \(u = \tan(2x). \)

3. \(\int y \ln(y) \, dy = \frac{1}{2}y^2 \ln(y) - \frac{1}{2}y^2 + C \)

(a) Where we used integration by parts and \(u = \ln(y), \, dv = y, \, du = \frac{1}{y}dy, \, v = \frac{1}{2}y^2 \)

2. [15 points] Find the length of the curve \(y = x^{1/2} - (1/3)x^{3/2}, \, 1 \leq x \leq 4. \)

1. Set \(x = t \) and \(y = t^{1/2} - (1/3)t^{3/2}, \) then \(\left[\frac{dx}{dt} \right]^2 = [1]^2 = 1 \) and \(\left[\frac{dy}{dt} \right]^2 = \left[\frac{1}{2}x^{-1/2} - \frac{1}{2}x^{1/2} \right]^2 = \frac{1}{4}x^{-1} - \frac{1}{2} + \frac{1}{4}x. \)

2. So

\[
ds = \sqrt{\left[\frac{dx}{dt} \right]^2 + \left[\frac{dy}{dt} \right]^2} \, dt = \sqrt{1 + \left(\frac{1}{4}x^{-1} - \frac{1}{2} + \frac{1}{4}x \right) dt}
= \sqrt{\frac{1}{4}x^{-1} + \frac{1}{2} + \frac{1}{4}x} \, dt = \sqrt{\left(\frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2} \right)^2} \, dt = \left| \frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2} \right| \, dt
\]

3. So \(s = \int_1^4 \left| \frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2} \right| \, dt = \int \left(\frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2} \right) \, dt = x^{1/2} + \frac{3}{8}x^{3/2} \bigg|_1^4 = \frac{10}{3} \)

3. [15 points] Find the area of the surface generated by revolving the curve \(y = \sqrt{4x-x^2}, \, 1 \leq x \leq 2 \)

about the \(x \)-axis.

1. Set \(x = t \) and \(y = (4t - t^2)^{1/2} \) so that

\[
\left[\frac{dx}{dt} \right]^2 + \left[\frac{dy}{dt} \right]^2 = 1 + \left[\frac{1}{2} \frac{(4 - 2t)}{\sqrt{4t - t^2}} \right]^2 = 1 + \frac{(2-t)^2}{4t - t^2} = \frac{4t - t^2 + (2-t)^2}{4t - t^2} = \frac{4}{4t - t^2}
\]

2. So, the surface area is \(2\pi \int_1^2 (radius) \, ds = 2\pi \int_1^2 \sqrt{4t - t^2} \sqrt{\frac{4}{4t - t^2}} \, dt = 2\pi \int_1^2 \frac{2}{d} \, dt = 4\pi \)

4. [15 points] Solve the initial value problem \(\frac{dy}{dx} = \frac{y \ln(y)}{1 + x^2}, \, y(0) = e^2. \)
1. Separate variables to obtain \[\int \frac{1}{y \ln(y)} \frac{dy}{dx} \] \[= \int \frac{1}{1 + x^2} \ dx \] and use the substitution \(u = \ln(y) \), \(du = \frac{1}{y} dy \) on the left integral.

2. \(\int \frac{1}{u} \ du = \ln |u| + C_1 = \ln |\ln y| + C_1 = \arctan(x) + C_2 \). Setting \(C = C_2 - C_1 \) we get

3. \(\ln |\ln y| = \arctan(x) + C \) and the initial condition tells us that \(\ln |\ln (e^2)| = \arctan(0) + C \) so \(C = \ln (\ln (e^2)) = \ln(2) \).

4. So \(\ln |\ln y| = \arctan(x) + \ln(2) \) which implies

\[\ln y = e^{\arctan(x)+\ln(2)} = e^{\arctan(x)} \cdot e^{\ln(2)} \]

So, \(y = e^{2\arctan(x)} \).

6. [10 points each] A deep dish-apple pie, whose internal temperature was 220°F when removed from the oven was set out on a breezy 40°F porch to cool. Fifteen minutes later, the pie’s internal temperature was 180°F. How much longer did it take for the pie to cool to 70°F?

1. Using \(T(t) - A = (T_0 - A) e^{-kt} \) with \(A = 40 \) and \(T_0 = 220 \) and \(T(15) = 180 \) we get

\[180 - 40 = (220 - 40) e^{-k(15)} \]

\[\ln \left(\frac{7}{8} \right) = k \]

2. Then using this \(k \) and solving for \(t \) in

\[70 - 40 = (220 - 40) e^{-kt} \]

\[\ln \left(\frac{1}{6} \right) = -kt \]

\[t = -\ln \left(\frac{1}{6} \right) / \ln \left(\frac{7}{8} \right) \approx 106.9 \text{ minutes} \]

3. The answer is 106.9 - 15 = 91.9 minutes.

7. [15 points] A disk of radius 2 is revolved around the \(y \)-axis to form a solid sphere. A round hole of radius \(\sqrt{3} \), centered on the \(y \)-axis is bored through the sphere. Find the volume of material removed from the sphere.

1. Using cylindrical shells we see the volume removed from the sphere is \(2\pi \int_0^{\sqrt{3}} x \pi - x^2 \ dx \) which we can integrate using \(u = 4 - x^2, du = -2x \ dx \). The removed volume is \(2\pi \int_0^{\sqrt{3}} x\pi - x^2 \ dx = \frac{14}{3} \pi \)

Extra Credit [5 points] At each point on the curve \(y = 2\sqrt{x} \), a line segment of length \(h = y \) is drawn perpendicular to the \(xy \)-plane. Set up an integral that equals the area of the surface formed by these perpendiculars from \(x = 0 \) to \(x = 3 \). [Note that this is not a surface of revolution so none of the formulas in Chapter 6 apply. Develop your own integral by using Riemann sums to estimate the area of the surface.]

1. The surface extends vertically upward from the curve \(y = 2\sqrt{x} \). If we partition the graph of \(y = 2\sqrt{x} \) into many small arcs of length approximately \(\Delta s_k \), then the area of the surface above the \(k \)th arc is approximately \(2\sqrt{x_k} \Delta s_k \). Thus the associated Riemann sum that approximates
the total area is \(\sum_{k=1}^{n} 2\sqrt{x_k} \Delta s_k \) and since \(f(x) = 2\sqrt{x} \) is a smooth curve on the given domain we know that the limit of Riemann sums exists and is equal to the integral \(\int_{0}^{3} 2\sqrt{x} \, ds \). To compute this actual area, we need to compute \(ds = \sqrt{1 + \frac{1}{x}} \, dx = \frac{x^{1/2}}{\sqrt{x+1}} \), so the integral is

\[
\int_{0}^{3} 2x^{1/2} \cdot \frac{x^{1/2}}{(x + 1)^{1/2}} \, dx = 2 \int_{0}^{3} \frac{x}{(x + 1)^{1/2}} \, dx
\]

which, when integrated by using the "Rule of Thumb" substitution \(u = x + 1 \), yields a value of \(\frac{16}{\pi} \).