VS-2 (Section PD)
Suppose \(S = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_{p-1}, \vec{v}_p, \vec{v}_{p+1} \cdots \vec{v}_m \} \) is an orthonormal basis for \(\mathbb{C}^m \) and let \(V = \langle \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_{p-1}, \vec{v}_p \} \rangle \) be the subspace of \(\mathbb{C}^m \) spanned by the first \(p \) vectors in \(S \) and \(W = \langle \{ \vec{v}_{p+1} \cdots \vec{v}_m \} \rangle \) be the subspace of \(\mathbb{C}^m \) spanned by the last \(m - p \) vectors in \(S \).

1. Quote the theorem from our textbook that tells us that \(\mathbb{C}^m = V \oplus W \).
2. Prove that if \(\vec{w} \in W \), then \(\vec{w} \) is orthogonal to every vector in \(V \).
3. Prove that if \(\vec{x} \) is orthogonal to every vector in \(V \), then \(\vec{x} \in W \).

Notes

- Because \(W \) satisfies the two properties (2 and 3) above, it is called the **orthogonal complement** of \(V \) in \(\mathbb{C}^m \) and is usually written \(V^\perp \).

- Professor Beezer has proved that

 1. Every subspace, \(V \), of \(\mathbb{C}^m \) has a basis
 2. That basis can be extended to a basis of \(\mathbb{C}^m \) and
 3. The Gram-Schmidt procedure can transform any basis into an orthonormal basis.

Your work along with these details proves the theorem

Theorem 1 If \(V \) is a subspace of \(\mathbb{C}^m \) then \(\mathbb{C}^m = V \oplus V^\perp \)