Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.

“Mathematicians do not study objects, but relations among objects; they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them.”
— Henri Poincaré

Problems

1. You must do this problem.

 (a) Prove the set $\text{Aut}(G)$ of all automorphisms of a group G forms a group, the binary operation being the composition of functions.

 (b) Determine the group of automorphisms of each of the following groups.

 i. $(\mathbb{Z}, +)$ (also known as \mathbb{Z}^+)

 ii. A cyclic group of order 10.

 iii. S_3

2. Do one of the following.

 (a) Describe all homomorphisms $\phi : (\mathbb{Z}, +) \to (\mathbb{Z}, +)$. Determine which are one-to-one, which are onto and which are isomorphisms.

 (b) Do all of the following.

 i. Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.

 ii. Suppose $\phi : G \to G'$ is an onto homomorphism. Prove, if G is cyclic, then G' is cyclic.

 iii. Suppose $\phi : G \to G'$ is an onto homomorphism. Prove, if G is abelian, then G' is abelian.

3. Do either of the following.

 (a) Find all subgroups of S_3 and determine which of these are normal.

 (b) Find all subgroups of the quaternion group and determine which of these are normal.

4. Let $\phi : G \to G'$ be an onto homomorphism and let N be a normal subgroup of G.

 (a) i. Show that the set $\phi(N) = \{\phi(n) : n \in N\}$ is a subgroup of G'.

 ii. Prove that $\phi(N)$ is a normal subgroup of G'.