Be sure to re-read the WRITING GUIDELINES rubric, since it defines how your project will be graded. In particular, you may discuss this project with others but **you may not collaborate on the written exposition of the solution.**

“It is by logic that we prove but by intuition that we discover.” (Henri Poincaré)

Two Theorems to Prove

Part 1. There is exactly one real number that can be written in the position marked by \Box in Theorem (1) below that makes the statement true. Determine that number and prove the resulting theorem.

Theorem 1 (1) Given any two solutions $(\beta_1, \beta_2, \ldots, \beta_n)$ and $(\gamma_1, \gamma_2, \ldots, \gamma_n)$ of the linear equation $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$. If $(\beta_1 + \gamma_1, \beta_2 + \gamma_2, \ldots, \beta_n + \gamma_n)$ is also a solution. Then $b = \Box$.

Part 2. Prove the following theorem.

Theorem 2 (2) Given two solutions $(\beta_1, \beta_2, \ldots, \beta_n)$ and $(\gamma_1, \gamma_2, \ldots, \gamma_n)$ of the linear equation $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$. Then $(\beta_1 - \gamma_1, \beta_2 - \gamma_2, \ldots, \beta_n - \gamma_n)$ is a solution of the related linear equation $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$.