Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of these ”Computational” problems

C.1. [15 points] If V is a subspace of \mathbb{C}^n then V^\perp is defined to be the set $V^\perp = \{ \vec{x} \in \mathbb{C}^n \mid \forall \vec{v} \in V \langle \vec{x}, \vec{v} \rangle = 0 \}$. That is, V^\perp is the set of all vectors in \mathbb{C}^n that are orthogonal to every vector in V.

1. Show that V^\perp is a subspace of \mathbb{C}^n.

C.2. [15 points] Express $4 - t - t^2$ as a linear combination of the vectors in $S = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$.

Do one (1) of these ”In Class, Text, or Homework” problems

1. [15 points] Show that $C(AB) \subseteq C(A)$. Here, $C(A)$ is the column space of matrix A.

2. [15 points] Prove that if matrix A is diagonalizable then A^3 is diagonalizable.

Do any two (2) of these ”Other” problems

1. [20 Points] Prove that if A, B are matrices for which the product AB is defined, then $\eta(B) \leq \eta(AB)$. Here $\eta(A)$ is the nullity of A.

2. [20 Points] Let A be an $n \times n$ matrix and let λ be a nonzero eigenvalue of A. Show that if \vec{x} is an eigenvector corresponding to λ then \vec{x} is in the column space of A.

3. [20 Points] Prove the following by contradiction. If λ and ρ are two distinct (not equal) eigenvalues of the square matrix A, then the intersection of the eigenspaces for these two eigenvalues is trivial. That is, $E_A(\lambda) \cap E_A(\rho) = \{0\}$.

Definitions

1. [15 points] Given a set V and an addition and scalar multiplication for elements in V, there are 10 properties that must hold for V to be a vector space. List those properties. Give the actual mathematical statements of the properties rather than the names of the properties. For example: write $\alpha (\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ instead of saying “scalar multiplication distributes over vector addition”.

1
Useful information

1. $\bar{x} \in N(A)$ iff $A\bar{x} = \bar{0}$

2. $\bar{y} \in C(A)$ iff there exists an \bar{x} with $A\bar{x} = \bar{y}$